

Tetrahedron: Asymmetry 12 (2001) 765-769

Easy access to optically active Hagemann's esters

Mohammed Nour,* Kimny Tan, Raphael Jankowski and Christian Cavé

Unité de Molécules d'Intérêt Biologique JE 2244, UFR de Pharmacie, BP 87900, 21079 Dijon cedex, France Received 14 February 2001; accepted 1 March 2001

Abstract—The synthesis of optically active Hagemann's esters was investigated. The starting materials in this approach were enamino esters (R,Z)-8, prepared through the condensation of keto ester 6 with (R)-1-phenylethylamine 7. Michael addition reaction of the enamino esters (R,Z)-8 with methyl vinyl ketone gave the expected adducts 10 with good e.e.s of 93–96%. Subsequent annulation of the adducts furnished optically active Hagemann's esters. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Commercially available Hagemann's ester 1 and its analogues have been extensively used in the synthesis of a variety of complex molecules, including terpenes, alkaloids, taxane core, steroids and flavones. As a part of our program directed toward synthesising new chiral building blocks, the enantiopure four-substituted Hagemann's esters 2 have recently attracted our attention (Scheme 1).

Although several racemic Hagemann's esters **2** have been previously prepared,² to our knowledge only one stereoselective approach to such a compound, (S)-**2** ($R = CH_3$; $R' = C_2H_5$), based on the microbial reduction of a β -keto ester,³ has been disclosed so far.

We planned to elaborate such molecules through an efficient enantioselective methodology we have developed based on the asymmetric Michael addition reaction using chiral β -enamino esters. Thus, condensation of chiral enamino-esters 3 (derived from cyclic or acyclic β -keto esters and enantiopure 1-phenylethylamine) to electron-deficient alkenes 4 under neutral conditions furnished, after hydrolytic work-up, β -keto esters 5, in moderate yields and excellent enantiomeric excesses (e.e.s) (Scheme 2).

Herein, we report a short, efficient enantioselective approach to various Hagemann's esters of type 2 by

applying this methodology. These compounds were obtained in good yields, and with excellent e.e.s of 93–96%.

2. Results and discussion

The enamino esters **8** were first prepared from reaction between the 2-substituted acetoacetate **6** and enantiomerically pure (R)-1-phenylethylamine **7** over 12 hours in toluene at reflux in the presence of catalytic p-TsOH. The (R)-esters were isolated in 72–86% purified yield. The (Z)-geometry in these compounds is secured by intramolecular hydrogen bonding.

Scheme 1.

Ph. Me
$$i:$$
 EWG $\frac{1}{4}$ EWG $\frac{1}{4}$ $\frac{1}$

Scheme 2.

0957-4166/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(01)00105-7

^{*} Corresponding author. E-mail: mohammed.nour@u-bourgogne.fr

a: R = Me, R' = Et b: R = Et, R' = Et c: R = Allyl, R' = Me d: R = Bn, R' = Me

Scheme 3.

Addition of enamino ester (R)-8 to methyl vinyl ketone 9 required the presence of 1 equiv. of zinc chloride. This condensation, which was carried out in THF for 1 hour at 0°C and quenched with 20% aqueous AcOH, furnished α , α -disubstituted β -keto esters 10 in 67–75% yield (Scheme 3).

The e.e.s of **10** (93–96%) were determined by ¹H NMR spectroscopy in the presence of the chiral shift reagent Eu(hfc)₃. The sense of induction of this Michael addition was deduced from mechanistic considerations (vide infra) and was unequivocally determined through the correlation of Hagemann's ester **2a** to the known derivative (S)-**2a**.³

As previously reported,² catalytic piperidinium acetate effects cyclisation of **10** furnishing mainly Hagemann's esters **2** in 65–79% yields (Scheme 4).

It is of interest to note that the stereochemical outcome observed in the previous Michael reactions using acyclic enamino esters 8 follows the general mechanism established in this series.⁵ In accordance with this mechanism, the reaction proceeds through the 'aza-ene'-like transition state 11, in which the N-H proton of the enamino ester is transferred to the α-carbon atom of the electrophilic alkene concertedly with the creation of the C-C bond. This requires a synclinal arrangement of the two reactants, as shown in the corresponding compact approach 12. According to such a model, alkylation takes place predominantly anti to the bulky phenyl ring of the chiral amine moiety portrayed in its energetically preferred conformation, minimising A^{1,3}-type strain, with the C-H bond more or less eclipsing the enamine ring. This accounts for the absolute configuration in adducts 10 (Scheme 5).

Studies directed at the utilisation of Hagemann's esters **2c** and **2d** as chiral building blocks are currently under investigation in our laboratory.

3. Experimental

3.1. General

Melting points were recorded on a Kofler bench. Infrared (IR) spectra were obtained on a Perkin-Elmer

881 as neat films between NaCl plates or KBr pellets. The ¹H and ¹³C NMR spectra were recorded on a Bruker AC 200 P (200 and 50 MHz, for ¹H and ¹³C, respectively) in CDCl₃. Recognition of methyl, methylene, methine and quaternary carbon nuclei in ¹³C NMR spectra rests on the J-modulated spin echo sequence. Optical rotations were measured at 20°C on a Polax L polarimeter in a 1 dm cell at 589 nm. Analytical thinlayer chromatography was performed on Merck silica gel 60F₂₅₄ pre-coated plates. All solvents were purified before use. Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl. Methanol was dried over magnesium and distilled. Toluene was distilled from calcium hydride. All reactions involving air- or watersensitive compounds were routinely conducted in flamedried glassware under positive pressure of nitrogen. Organic extracts were dried over anhydrous MgSO₄. Compounds obtained from commercial suppliers were used without further purification. All elemental analyses were performed by the Service de Microanalyse, Centre d'Etudes Pharmaceutiques, Châtenay-Malabry, France, with a Perkin-Elmer 2400 analyser.

3.2. General procedure for the preparation of enamino esters

To a solution of keto ester 6 (0.05 mol) and p-toluene-sulfonic acid (catalytic) in anhydrous toluene (100 mL) was added R-(+)-1-phenylethylamine (0.0055 mol). The mixture was stirred under reflux for 14 h with azeotropic removal of water using a Dean–Stark trap. The solution was cooled to 20° C, concentrated in vacuo and the residue purified by distillation.

a: R = Me, R' = Et b: R = Et, R' = Et c: R = Allyl, R' = Me d: R = Bn, R' = Me

Scheme 4.

Scheme 5.

3.2.1. (*R*)-2-Methyl-3-(1-phenylethylamino)-but-2-enoic acid ethyl ester 8a. Oil; yield 86%; bp (0.1 mmHg): 135° C; $[\alpha]_{D} = -298$ (c = 5.5, CHCl₃); IR (neat, cm⁻¹): 3244, 1646, 1603, 1592, 1450; ¹H NMR (200 MHz, CDCl₃) δ 1.3 (t, J = 7.0 Hz, 3H), 1.5 (d, J = 7.0 Hz, 3H), 1.75 (s, 3H), 4.19 (q, J = 7.0 Hz, 2H), 4.6 (quint, J = 7.0 Hz, 1H), 7.2 - 7.4 (m, 5H), 9.6 (d, J = 7.0 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 172.0 (C), 159.0 (C), 142.5 (C), 128.9 (2 CH), 127.2 (CH), 125.5 (2 CH), 87.5 (C), 58.6 (CH₂), 53.0 (CH), 25.1 (CH₃), 15.6 (CH₃), 14.5 (CH₃), 12.4 (CH₃).

3.2.2. (*R*)-2-Ethyl-3-(1-phenylethylamino)-but-2-enoic acid ethyl ester 8b. Syrup; yield 72%; bp (0.1 mmHg): 140° C; $[\alpha]_{D} = -315.2$ (c = 2.85, CHCl₃); IR (neat, cm⁻¹): 3250, 2980, 1650, 1600; ¹H NMR (200 MHz, CDCl₃) δ 0.9 (t, J = 6.0 Hz, 3H), 1.38 (t, J = 7.0 Hz, 3H), 1.40 (d, J = 7 Hz, 3H), 1.78 (s, 3H), 2.20 (q, J = 6 Hz, 2H), 4.10 (q, J = 7 Hz, 2H), 4.60 (quint, J = 7.0 Hz, 1H), 7.10 - 7.30 (m, 5H), 9.65 (d, J = 7 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 176.0 (C), 159.5 (C), 142.5 (C), 128.2 (2 CH), 126.8 (CH), 124.9 (2 CH), 95.0 (C), 59.4 (CH₂), 52.4 (CH), 24.8 (CH₃), 22.5 (CH₂), 17.5 (CH₃), 16.8 (CH₃), 16.6 (CH₃).

3.2.3. (*R*)-2-Allyl-3-(1-phenylethylamino)-but-2-enoic acid methyl ester 8c. Syrup; yield 75%; bp (0.1 mmHg): 140° C; $[\alpha]_{D} = -387$ (c = 12.3, CHCl₃); IR (neat, cm⁻¹): 3230, 2900, 1648, 1600; ¹H NMR (200 MHz, CDCl₃) δ 1.25 (d, J = 6.0 Hz, 3H), 1.78 (s, 3H), 2.85–3.0 (m, 2H), 3.69 (s, 3H), 4.60 (quint, J = 6.0 Hz, 1H), 4.80–4.90 (m, 2H), 5.60–5.90 (m, 1H), 7.10–7.29 (m, 5H), 9.80 (d, J = 6.0 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 176.0 (C), 160.6 (C), 145.5 (C), 138.3 (CH), 128.8 (2 CH), 127.0 (CH), 125.5 (2 CH), 113.0 (CH₂), 90.1 (C), 53.2 (CH₃), 50.5 (CH), 31.1 (CH₂), 25.2 (CH₃), 15.3 (CH₃).

3.2.4. (*R*)-2-Benzyl-3-(1-phenylethylamino)-but-2-enoic acid methyl ester 8d. Syrup; yield 84%; bp (0.1 mmHg): 150° C; $[\alpha]_{D} = -310$ (c = 1.4, CHCl₃); IR (neat, cm⁻¹): 3190, 1717, 1648; ¹H NMR (200 MHz, CDCl₃) δ 1.25 (d, 3H, J = 7.0 Hz), 1.70 (s, 3H), 3.48 (d, J = 14 Hz, 1H), 3.70 (d, J = 14 Hz, 1H), 3.80 (s, 3H), 4.60 (quint,

J=7 Hz, 1H), 7.00–7.40 (m, 5H), 9.90 (d, J=7.0 Hz 1H); 13 C NMR (50 MHz, CDCl₃) δ 171.13 (C), 158.8 (C), 142.2 (C), 137.5 (C), 90.1 (C), 129.2 (2 CH), 128.4 (2 CH), 128.1 (2 CH), 127.3 (2 CH), 126.7 (CH), 125.5 (CH), 52.7 (CH), 50.8 (CH₃), 30.7 (CH₂), 24.9 (CH₃), 18.6 (CH₃).

3.3. General procedure for the addition of methyl vinyl ketone

Methyl vinyl ketone (0.055 mol) was added to a solution of ZnCl₂ (catalytic) in anhydrous toluene (40 mL). The mixture was stirred for 1 h at 0°C. A solution of enamino ester 8 (0.05 mol) in anhydrous toluene (5 mL) was added and the mixture was stirred at 0°C for 2 h. A 10% aqueous acetic acid solution was then added (30 mL) and the resulting mixture was stirred for 2 h. The aqueous phase was saturated with NaCl and extracted with ethyl acetate (3×50 mL). The collected organic layers were dried over sodium sulfate and concentrated. The crude oil was purified by flash chromatography [silica gel, ethyl acetate:hexane (2:8)].

3.3.1. (*R*)-2-Acetyl-2-methyl-5-oxo-hexanoic acid ethyl ester 10a. Oil; yield 72%; $[\alpha]_D = +8.5$ (c = 4.8, CHCl₃); IR (film, cm⁻¹): 1717 1682 1357, 1250; ¹H NMR (200 MHz, CDCl₃) δ 1.20 (t, J = 6.0 Hz, 3H), 1.25 (s, 3H), 1.80–2.10 (m, 2H), 2.05 (s, 3H), 2.09 (s, 3H), 2.20–2.45 (m, 2H), 4.1 (q, J = 6.0 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 207.1 (C), 205.1 (C), 172.4 (C), 61.2 (CH₂), 58.4 (C), 38.3 (CH₂), 29.7 (CH₃), 28.3 (CH₂), 25.9 (CH₃), 19.0 (CH₃), 13.9 (CH₃). Anal. calcd for C₁₁H₁₈O₄: C, 61.66, H 8.47. Found: C, 61.79; H, 8.52%.

3.3.2. (*R*)-2-Acetyl-2-ethyl-5-oxo-hexanoic acid ethyl ester 10b. Oil; yield 67%; $[\alpha]_D = +8.7$ (c = 1.6, CHCl₃); IR (film, cm⁻¹): 2975, 1717 1361, 1235; ¹H NMR (200 MHz, CDCl₃) δ 0.7 (t, J = 6.0 Hz, 3H), 1.25 (t, J = 6.0 Hz, 3H), 1.89 (m, 2H), 2.00 (s, 3H), 2.05 (s, 3H), 2.10–2.20 (m, 2H), 2.25–2.40 (m, 2H), 4.2 (q, J = 6.0 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 209.1 (C), 207.2 (C), 176.0 (C), 60.7 (C), 59.8 (CH₂), 38.3 (CH₂), 28.1 (CH₂), 25.9 (CH₂), 24.7 (CH₃), 19.6 (CH₃), 14.1 (CH₃), 8.5 (CH₃). Anal. calcd for C₁₂H₂₀O₄: C, 63.14; H, 8.83. Found: C, 63.34; H, 8.72%.

3.3.3. (*S*)-2-Acetyl-2-(3-oxobutyl)-pent-4-enoic acid methyl ester 10c. Oil; yield 73%; $[\alpha]_D = +18.6$ (c = 9.9, CHCl₃); IR (film, cm⁻¹): 1730, 1714; ¹H NMR (200 MHz, CDCl₃) δ 2.05 (s, 3H), 2.07 (s, 3H), 2.05–2.19 (m, 2H), 2.29–2.39 (m, 2H), 2.45–2.65 (m, 2H), 3.65 (s, 3H), 4.90–5.10 (m, 2H), 5.49–5.62 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 207.0 (C), 201.9 (C), 176.8 (C), 131.9 (CH), 119.2 (CH₂), 62.4 (C), 52.4 (CH₃), 38.1 (CH₂), 36.8 (CH₂), 29.9 (CH₃), 26.9 (CH₃), 25.4 (CH₂). Anal. calcd for C₁₂H₁₈O₄: C, 63.70; H, 8.02. Found: C, 63.76; H, 7.79%.

3.3.4. (*S*)-2-Acetyl-2-benzyl-5-oxo-hexanoic acid methyl ester 10d. White powder; mp 77–79°C; yield 75%; $[\alpha]_D = -26.9$ (c = 4.5, CHCl₃); IR (film, cm⁻¹): 1735, 1668; ¹H NMR (200 MHz, CDCl₃) δ 2.05 (s, 3H), 2.07 (s, 3H), 2.01–2.10 (m, 2H), 2.15–2.45 (m, 2H), 3.10 (s,

2H), 3.71 (s, 3H), 6.95–7.05 (m, 2H), 7.14–7.20 (m, 3H); 13 C NMR (50 MHz, CDCl₃) δ 204.9 (C), 201.3 (C), 171.1 (C), 139.4 (C), 130.7 (2 CH), 128.1 (2 CH), 125.7 (CH), 60.9 (C), 52.3 (CH₃), 39.7 (CH₂), 36.1 (CH₂), 29.4 (CH₂), 26.4 (CH₃), 23.1 (CH₃). Anal. calcd for C₁₆H₂₀O₄: C, 69.54; H, 7.30. Found: C, 69.68; H, 7.17%.

3.4. General procedure for synthesis of Hagemann's ester cyclisation

To the adduct (0.010 mol) was added piperidine (0.008 mol) and acetic acid (0.0095 mol). The mixture was stirred at 80°C for 1.5 h, dissolved in diethyl ether (20 mL), and the organic phase washed with water (3×15 mL). The aqueous layer was extracted with diethyl ether (2×30 mL). The combined organic extracts were dried over sodium sulfate and concentrated in vacuo and the evaporation residue was purified by flash chromatography [silica gel, ethyl acetate:hexane (2:8)].

- **3.4.1.** (*R*)-1,2-Dimethyl-4-oxo-cyclohex-2-enecarboxylic acid ethyl ester 2a. Oil; yield 78%; $[\alpha]_D = +108.3$ (c = 4.1, CHCl₃); IR (film, cm⁻¹): 1734, 1678, 1627; ¹H NMR (200 MHz, CDCl₃) δ 1.25 (t, J = 7 Hz, 3H), 1.40 (s, 3H), 1.95 (d, J = 1 Hz, 3H), 2.00–2.30 (m, 2H), 2.40–2.60 (m, 2H), 4.20 (q, J = 7 Hz, 2H), 5.90 (q, J = 1 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 197.8 (C), 173.5 (C), 161.1 (C), 127.7 (CH), 60.9 (CH₂), 46.9 (C), 33.9 (CH₂), 33.9 (CH₂), 21.9 (CH₃), 19.8 (CH₃), 13.7 (CH₃). Anal. calcd for C₁₁H₁₆O₃: C, 67.32; H, 8.22. Found: C, 67.20; H, 8.35%.
- 3.4.2. (*R*)-1-Ethyl-2-methyl-4-oxo-cyclohex-2-enecarboxylic acid ethyl ester 2b. Oil; yield 68%; $[\alpha]_D = +109.7$ (c = 6.2, CHCl₃); IR (film, cm⁻¹): 1714, 1675, 1652; 1 H NMR (200 MHz, CDCl₃) δ 0.86 (t, J = 7 Hz, 3H), 1.26 (t, J = 7 Hz, 3H), 1.65–1.74 (m, 2H) 1.98 (d, J = 1 Hz, 3H), 1.98–2.10 (m, 2H), 2.30–2.60 (m, 2H), 4.18 (q, J = 7 Hz, 2H), 5.95 (q, J = 1 Hz, 1H); 13 C NMR (50 MHz, CDCl₃) δ 195.0 (C), 170.5 (C), 162.1 (C), 126.7 (CH), 60.8 (CH₂), 55.1 (C), 29.5 (CH₂), 28.0 (CH₂), 22.9 (CH₂), 24.8 (CH₃), 13.9 (CH₃), 9.8 (CH₃). Anal. calcd for C₁₂H₁₈O₃: C, 68.54; H, 8.63. Found: C, 68.42; H, 8.27%.
- **3.4.3.** (*S*)-1-Allyl-2-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester 2c. Syrup; yield 79%; $[\alpha]_D = +88.4$ (c = 12.8, CHCl₃); IR (film, cm⁻¹): 1731, 1678; ¹H NMR (200 MHz, CDCl₃) δ 1.96 (d, J = 1 Hz, 3H), 2.00–2.07 (m, 1H), 2.25–2.45 (m, 3H), 2.50–2.70 (m, 2H), 3.69 (s, 3H), 5.09–5.15 (m, 2H), 5.60–5.75 (m, 1H), 5.90 (q, J = 1 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 198.1 (C), 173.0 (C), 159.9 (C), 132.8 (CH), 129.4 (CH), 119.4 (CH₂), 55.7 (C), 50.4 (CH₃), 39.9 (CH₂), 34.1 (CH₂), 30.4 (CH₂), 21.3 (CH₃). Anal. calcd for C₁₂H₁₆O₃: C, 69.21; H, 7.74. Found: C, 69.18; H, 7.77%.
- **3.4.4.** (*S*)-1-Benzyl-2-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester 2d. White powder; mp 40–43°C; yield 65%; [α]_D=-62.5 (c=3.2, CCl₄); IR (film, cm⁻¹): 3100, 1740, 1680; ¹H NMR (200 MHz, CDCl₃) δ

1.78–1.95 (m, 1H), 2.0 (d, J=1 Hz, 3H), 2.10–2.50 (m, 3H), 2.80 (d, J=14 Hz, 1H), 3.45 (d, J=14 Hz, 1H), 3.70 (s, 3H), 5.9 (d, J=1 Hz, 1H), 7.0–7.1 (m, 2H), 7.15–7.25 (m, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 194.6 (C), 171.4 (C), 162.2 (C), 136.5 (C), 130.7 (2 CH), 128.1 (2 CH), 126.7 (CH), 126.0 (CH), 56.9 (C), 52.4 (CH₃), 39.8 (CH₂), 29.5 (CH₂), 28.8 (CH₂), 24.1 (CH₃). Anal. calcd for C₁₆H₁₈O₃: C, 74.39; H, 7.02. Found: C, 74.52; H, 7.29%.

Acknowledgements

The authors are grateful to the Ballu company for the generous gift of optically active 1-phenylethylamine and Nadia Pelligrini for her technical assistance.

References

- (a) Cardwell, H. M. E. J. Chem. Soc. 1949, 715–719; (b) Johnson, W. S.; Jensen, N. P.; Hooz, J.; Leopold, E. J. J. Am. Chem. Soc. 1968, 90, 5872–5881; (c) Sakan, K.; Craven, B. M. J. Am. Chem. Soc. 1983, 105, 3732–3734; (d) Jones, J. B.; Dodds, D. R. Can. J. Chem. 1987, 65, 2397–2404; (e) Ackland, D. J.; Pinhey, J. T. J. Chem. Soc., Perkin Trans. 1 1987, 2689–2694; (f) Hormann, R. E. Eur. Pat. Appl. 773216 A1, 14 May 1997; Chem. Abstr. 1997, 127, P 34126 b; (g) Cavé, C.; Valancogne, I.; Casas, R.; d'Angelo, J. Tetrahedron Lett. 1998, 39, 5872–5881.
- (a) Begbie, A. L.; Golding, B. T. J. Chem. Soc., Perkin Trans. 1 1972, 602–605; (b) Nasipuri, D.; Mitra, K.; Venkataraman, S. J. Chem. Soc., Perkin Trans. 1 1972, 1836–1838.
- Frater, G.; Müller, U.; Günter, W. Tetrahedron 1984, 40, 1269–1277.
- 4. For recent developments: Cavé, C.; Desmaële, D.; d'Angelo, J.; Riche, C. J. Org. Chem. 1996, 61, 4361-4368; Hervouet, K.; Guingant, A. Tetrahedron: Asymmetry 1996, 7, 421-424; Jabin, I.; Revial, G.; Melloul, K.; Pfau, M. Tetrahedron: Asymmetry 1997, 8, 1101–1109; Witschel, M. C.; Bestmann, H. J. Synthesis 1997, 107-112; Cavé, C.; Gassama, A.; Mahuteau, J.; d'Angelo, J.; Riche, C. Tetrahedron Lett. 1997, 38, 4773-4776; d'Angelo, J.; Cavé, C.; Desmaële, D. Isr. J. Chem. 1997, 37, 81-85; Cavé, C.; Le Porhiel-Castellon, Y.; Daley, D.; Riche, C.; Chiaroni, A.; d'Angelo, J. Tetrahedron Lett. 1997, 38, 8703-8706; Da Silva Goes, A. J.; Cavé, C.; d'Angelo, J. Tetrahedron Lett. 1998, 39, 1339–1340; d'Angelo, J.; Cavé, C.; Desmaële, D.; Gassama, A.; Thominiaux, C.; Riche, C. Heterocycles 1998, 47, 725-746; Thominiaux, C.; Roussé, S.; Desmaële, D.; d'Angelo, J.; Riche, C. Tetrahedron: Asymmetry 1999, 10, 2015-2021; Lim, S.; Jabin, I.; Revial, G. Tetrahedron Lett. 1999, 40, 4177-4180; Daley, V.; d'Angelo, J.; Cavé, C.; Mahuteau, J.; Chiaroni, A.; Riche, C. Tetrahedron Lett. 1999, 40, 1657-1660; Gassama, A.; d'Angelo, J.; Cavé, C.; Mahuteau, J.; Riche, C. Eur. J. Org. Chem. 2000, 3165-3169; Nour, M.; Tan, K.; Cavé, C.; Villeneuve, D.; Desmaelle, D.; d'Angelo, J.; Riche, C. Tetrahedron: Asymmetry 2000, 11, 995-1002; Revial, G.; Lim, S.; Viossat, B.; Lemoine, P.; Tomas, A.; Duprat, A. F.; Pfau, M.

- J. Org. Chem. **2000**, 65, 4593–4600; Muri, E.; Kanazawa, A.; Barreiro, E.; Greene, A. E. J. Chem. Soc., Perkin Trans. 1 **2000**, 731–735.
- 5. (a) Sevin, A.; Tortajada, J.; Pfau, M. J. Org. Chem. 1986,
- 51, 2671–2675; (b) Sevin, A.; Masure, D.; Giessner-Prettre, C.; Pfau, M. Helv. Chim. Acta 1990, 73, 552–573; (c) Tran Huu Dau, M. E.; Riche, C.; Dumas, F.; d'Angelo, J. Tetrahedron: Asymmetry 1998, 9, 1059–1064.